Performance of a novel collimator for high-sensitivity brain SPECT.

نویسندگان

  • Georges El Fakhri
  • Jinsong Ouyang
  • Robert E Zimmerman
  • Alan J Fischman
  • Marie Foley Kijewski
چکیده

We assessed improvements in performance in detection and estimation tasks due to a novel brain single photon computed tomography collimator. Data were acquired on the CeraSPECT scanner using both new and standard collimators. The new variable focusing collimator SensOgrade samples the projections unequally, with central regions more heavily represented, to compensate for attenuation of counts from central brain structures. Furthermore, it utilizes more of the cylindrical crystal surface. Two phantom studies were performed. The first phantom was a 21-cm-diameter cylindrical background containing nine spheres ranging from 0.5 to 5 cm3 in volume. 99mTc sphere to background activity ratio was 10:1. Twenty-nine 10-min datasets were acquired with each collimator. The second phantom was the Radiology Support Devices (Long Beach, CA) striatal phantom with striatal-background ratios of 10:1 on the left and 5:1 on the right. Twenty-nine 4-min datasets were acquired with each collimator. Perfusion imaging using 99mTc-HMPAO was also performed in three healthy volunteers using both collimators under identical simulations. Projections were reconstructed by filtered backprojection with an unwindowed ramp filter. The nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) was computed as a surrogate for human performance in detecting spherical lesions. Sphere activity concentration, radius, and location coordinates were simultaneously estimated by fitting images to an assumed model using an iterative nonlinear algorithm. Resolution recovery was implicit in the estimation procedure, as the point spread function was incorporated into the model. NPW-SNR for sphere detection was 1.5 to 2 times greater with the new collimator; for the striatal phantom the improvement in SNR was 54%. The SNR for estimating sphere activity concentration improved by 46 to 89% for spheres located more than 5 cm from the phantom center. Images acquired with the standard collimator were too noisy in the central regions to allow estimation of sphere activity. In 99mTc-HMPAO human studies, SNR was improved by 21 to 41% in the cortex, 66% in the basal ganglia, and 74% in the thalamus. The new collimator leads to substantially improved detection and estimation performance throughout the brain. The higher sensitivity will be particularly important for dynamic imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of an ultra-high-resolution rectangular pixelated parallel-hole collimator with a CZT pixelated semiconductor detector for HiRe-SPECT system

Introduction: In nuclear medicine, the use of a pixelated semiconductor detector such as CZT is an of growing interest for introducing new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the pixelated detector. The purpose of this study was to compare the effect of pixelated and ...

متن کامل

Evaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study

Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...

متن کامل

The evaluation of slant hole collimator in myocardial perfusion SPECT: a simulation study

Introduction: We have investigated cardiac SPECT with slant hole collimator in which the holes are slanted towards the target organ, to provide greater sensitivity over the parallel hole collimator. In addition, parallel hole collimator was used to obtain a comparison in FWHM, sensitivity, Compton and photoelectric area values in the simulations. Materials and Methods...

متن کامل

Evaluation of the Reconstruction Parameters of Brain Dopamine Transporter SPECT Images Obtained by a Fan Beam Collimator: A Comparison with Parallel-hole Collimators

Objective(s): The purpose of this study was to examine the optimal reconstruction parameters for brain dopamine transporter SPECT images obtained with a fan beam collimator and compare the results with those obtained by using parallel-hole collimators.Methods: Data acquisition was performed using two SPECT/CT devices, namely a Symbia T6 and an Infinia Hawkeye 4 (device A and B) equipped with fa...

متن کامل

Performance of myocardial perfusion imaging using multi-focus fan beam collimator with resolution recovery reconstruction in a comparison with conventional SPECT

  Objective: IQSPECT is an advanced high-speed SPECT modality for performing myocardial perfusion imaging (MPI), which uses a multi-focus fan beam collimator with resolution recovery reconstruction. The aim of this study was to compare IQSPECT compared with conventional SPECT interms of performance based on standard clinical protocols. In addition, we examined the concordance between convention...

متن کامل

Optimization of a SPECT system for imaging of 90Y in liver using Monte Carlo method

Introduction: Acquiring a high quality image has assigned an important concern for obtaining accurate diagnosis in nuclear medicine. Detector and collimator are critical component of Single Photon Emission Computed Tomography (SPECT) imaging system for giving accurate information from exact pattern of radionuclide distribution in the target organ. The images are strongly affect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2006